∵数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,设bn=log2(an-1),则b1=log2(3-1)=1,b2=log2(5-1)=2,∴bn=n,∴log2(an-1)=n,∴an=2n+1,∴数列{an}的前n项和:Sn=2+22+23+…+2n+n= 2(1?2n) 1?2 +n=2n+1+n-2.故答案为:2n+1+n-2.