数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5
数列的公差为log24-log22=1,
故log2(an-1)=1+(n-1)×1=n,即an-1=2n,an=1+2n,
∴an+1-an=2n+1+1-2n-1=2n
∴
(lim n→∞
+1
a2?a1
+…+1
a3?a2
)=1
an+1?an
(lim n→∞
+1 2
+…+1 22
)=1 2n
(lim n→∞
)=
×(1?1 2
)1 2n 1?
1 2
(1?lim n→∞
)=11 2n
故答案为1