已知等差数列{an}的前n项和为Sn,且a3=5,S15=225;等比数列{bn}满足:b3=a2+a3,b2b5=128(1)求数列{an

2025-05-12 14:34:21
推荐回答(1个)
回答(1):

(1)设an=a1+(n-1)d,Sn=

n(a1+an
2

所以 a3=a1+2d=5      ①,
S15=
15( a1+a15)
2
=15(a1+7d)=225
a1+7d=15         ②
①②联立解得d=2,a1=1,
∴数列{an}的通项公式为an=2n-1
设bn=b1?q(n-1)
所以 b3=a2+a3=8,
b2=
b3
q
,b5=b3?q2
∴b2?b5=b32?q=64?q=128
∴q=2
∴数列{bn}的通项公式为bn=b3?qn-3=2n(n=1,2,3,…).
(2)∵cn=(2n-1)?2n
∵Tn=2+3?22+5?23+…+(2n-1)?2n
2Tn=22+3?23+5?24+…+(2n-3)?2n+(2n-1)?2 n+1
作差:-Tn=2+23+24+25+…+2 n+1-(2n-1)?2 n+1
=2+23(1-2n-1)1-2-(2n-1)?2n+1
=2+
23(1?2n?1)
1?2
-(2n-1)?2 n+1
=2+2n+2-8-2 n+2n+2 n+1=-6-2n+1?(2n-3)
∴Tn=(2n-3)?2 n+1+6(n=1,2,3,…).