已知等差数列(an)的前n项和为Sn,且a3=5,S15=225,设bn=2^a n+2n,求数

2025-05-11 15:49:20
推荐回答(1个)
回答(1):

(1)
S15=225
15(a1+a15)/2=15a8=225
a8=15
a3=5
所d=(15-5)/5=2
故a1=a3-2d=5-2*2=1

所an=a1+(n-1)d=1+2(n-1)=2n-1
(2)
bn=2^an+2n=2^(2n-1)+2n
分组求和
Tn=b1+b2+...+bn
=(2^1+2)+(2^3+2*2)+...+(2^(2n-1)+2n)
=(2+2^3+...+2^(2n-1))+2(1+2+...+n)
=2*(1-4^n)/(1-4)+n(n+1)
=2*(4^n-1)/3+n(n+1)

望采纳~~~