(Ⅰ)设等差数列{an}首项为a1,公差为d,
由题意,得
,
a1+2d=5 15a1+
d=22515×14 2
解得
,
a1=1 d=2
∴an=2n-1;
(Ⅱ)bn=
×2an+3 2
=1 n(n+1)
×22n-1+(3 2
-1 n
),1 n+1
Tn=b1+b2+b3+…+bn=
×(21+23+25+…+22n-1)+(1-3 2
)+(1 2
-1 2
)+…+(1 3
-1 n
)=1 n+1
(3 2 2(1?2n