在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n>=2,q不等于0)

2025-05-13 16:39:34
推荐回答(1个)
回答(1):

(1)
我看你想表达的是
bn=a(n+1)-an吧……
a(n+1)=(1+q)*an-q*a(n-1)
a(n+1)-an=q*(an-a(n-1))
即bn=q*b(n-1)
故{bn}是等比数列
(2)
a(n+1)-an=q*(an-a(n-1))
a(n+1)-q*an=an-q*a(n-1)
a2-a1=1
a2--q*a1=2-q
a(n+1)-an=q^(n-1)
a(n+1)-q*an=2-q
an=(q^(n-1)+q-2)/(q-1)