(1)证明:由题设an+1=(1+q)an-qan-1(n≥2),得an+1-an=q(an-an-1),即bn=qbn-1,n≥2.又b1=a2-a1=1,q≠0,所以{bn}是首项为1,公比为q的等比数列.(2)由(1)可得数列{bn}的通项公式bn=qn-1,∵bn=an+1-an,∴an-an-1=qn-2,…a2-a1=1,把上述各式相加,得到an-a1=qn-2+qn-3+…+q∴an= 1+ 1?qn?1 1?q ,q≠1 n,q=1