解(1)∵a1=1,an+1═
,an
an+3
∴
=1 an+1
=1+
an+3 an
,3 an
即
+1 an+1
=1 2
+3 an
=3(3 2
+1 an
),1 2
则{
+1 an
}为等比数列,公比q=3,1 2
首项为
+1 a1
=1+1 2
=1 2
,3 2
则
+1 an
=1 2
?3n-1,3 2
即
=-1 an
+1 2
?3n-1=3 2
(3n-1),即an=1 2
.2
3n-1
(2)bn=(3n-1)?
?an=
n 2n