(Ⅰ)解:∵a1=3,a2=2,数列{an-1}为等比数列,
∴an-1=2?(
)n?1=22-n,1 2
∴an=22-n+1,
∵b1=b2=2,b3=3,数列{bn+1-bn}为等差数列,
∴bn+1-bn=n-1,
∴bn=b1+(b2-b1)+…+(bn-bn-1)=
;
n2?n+4 2
(Ⅱ)证明:n≥3时,
=1
bn?2
=2(2 n(n?1)
-1 n?1
),1 n
∴
+1
b3?2
+…+1
b4?2
=2(1
bn?2
-1 2
+…+1 3
-1 n?1
)=2(1 n
-1 2
)≤1 n
<2.1 3