已知等差数列{an}的前n项和为Sn,公差d≠0,a1=1,且a1,a2,a7成等比数列.(1)求数列{an}的前n项和Sn

2025-05-13 02:07:18
推荐回答(1个)
回答(1):

(1)∵a1,a2,a7成等比数列,
∴a22=a1?a7,即(a1+d)2=a1(a1+6d),
又a1=1,d≠0,∴d=4.
∴Sn=na1+

n(n?1)
2
d=n+2n(n-1)=2n2-n.
(2)证明:由(1)知bn=
2Sn
2n?1
=
2n(2n?1)
2n?1
=2n,
∴{bn}是首项为2,公差为2的等差数列,
∴Tn=
n(2+2n)
2
=n2+n,
∴2Tn-9bn-1+18=2n2+2n-18(n-1)+18
=2n2-16n+36=2(n2-8n+16)+4=2(n-4)2+4≥4,当且仅当n=4时取等号.①
64bn
(n+9)bn+1
64×2n
(n+9)×2(n+1)
=
64n
n2+10n+9
64
n+
9
n
+10
64
6+10
=4.

当且仅当n=
9
n
即n=3时,取等号.②
∵①②中等号不能同时取到,∴2Tn?9bn?1+18>
64bn
(n+9)bn+1
(n>1)