(1)∵a1,a2,a7成等比数列,
∴a22=a1?a7,即(a1+d)2=a1(a1+6d),
又a1=1,d≠0,∴d=4.
∴Sn=na1+
d=n+2n(n-1)=2n2-n.n(n?1) 2
(2)证明:由(1)知bn=
=2Sn
2n?1
=2n,2n(2n?1) 2n?1
∴{bn}是首项为2,公差为2的等差数列,
∴Tn=
=n2+n,n(2+2n) 2
∴2Tn-9bn-1+18=2n2+2n-18(n-1)+18
=2n2-16n+36=2(n2-8n+16)+4=2(n-4)2+4≥4,当且仅当n=4时取等号.①
=64bn
(n+9)bn+1
=64×2n (n+9)×2(n+1)
=64n
n2+10n+9
≤64 n+
+109 n
=4.64 6+10
当且仅当n=
即n=3时,取等号.②9 n
∵①②中等号不能同时取到,∴2Tn?9bn?1+18>
(n>1).64bn
(n+9)bn+1