已知数列{an}是公差不为0的等差数列,前n项和为Sn,S5=20,a1,a3,a7成等比数列,数列{1anan+1}的前n项

2025-05-14 09:58:52
推荐回答(1个)
回答(1):

(1)设等差数列{an}的公差为d,

5a1+
5×4
2
×d=20
(a1+2d)2a1?(a1+6d)
,解得
d=1
a1=2

∴an=2+n-1=n+1.
(2)由(1)得,
1
anan+1
1
(n+1)(n+2)
=
1
n+1
?
1
n+2

则Tn=(
1
2
?
1
3
)+(
1
3
?
1
4
)+…+(
1
n+1
?
1
n+2

=
1
2
?
1
n+2
=
n
2(n+2)

∴Tn≤λan+1对一切n∈N*恒成立,
n
2(n+2)
≤λ(n+2)对一切n∈N*恒成立,
化简得,