(1)设等差数列{an}的公差为d,
则
,解得
5a1+
×d=205×4 2 (a1+2d)2=a1?(a1+6d)
,
d=1
a1=2
∴an=2+n-1=n+1.
(2)由(1)得,
=1
anan+1
=1 (n+1)(n+2)
?1 n+1
,1 n+2
则Tn=(
?1 2
)+(1 3
?1 3
)+…+(1 4
?1 n+1
)1 n+2
=
?1 2
=1 n+2
,n 2(n+2)
∴Tn≤λan+1对一切n∈N*恒成立,
即
≤λ(n+2)对一切n∈N*恒成立,n 2(n+2)
化简得,