(1)数列{an}是等差数列,且a1=2,a1+a2+a3=9,设出公差为d,∴a1+a1+d+a1+2d=9,∴a1+d=3,可得2+d=3,解得d=1,∴an=a1+(n-1)d=2+(n-1)×1=n+1;(2)bn=an2an=(n+1)?2n+1,设其前n项和为Sn,∴Sn=2?22+3?23+…+(n+1)?2n+1①2Sn=2?23+3?24+…+(n+1)?2n+2②①-②可得-Sn=2?22+23+…+2n+1-(n+1)?2n+2,∴Sn=n?2n+2.