(1)∵a1=1,a2n+1=qa2n-1+d,q≠0,
①当d=0时,a2n+1=qa2n-1,显然{a2n-1}是等比数列;
②当d≠0时,a3=qa1+d=q+d,a5=qa3+d=q(q+d)+d.
∵数列{a2n-1}是等比数列,
∴=a1a5,即(q+d)2=q(q+d)+d,化简得q+d=1.
此时有a2n+1=qa2n-1+1-q,得a2n+1-1=q(a2n-1-1),
由 a1=1,q≠0,得a2n-1=1(n∈N*),则数列{a2n-1}是等比数列.
综上,q与d满足的条件为d=0(q≠0)或q+d=1(q≠0,d≠0).
(2)当d=0,q=2时,
∵a2n+1=2a2n-1,
∴a2n?1=a1?2n?1=2n?1,
依题意得:x4=a1-a3=1-2,x8=1?2+22?23,…,
∴x4n=1?2+22?23+…+22n?2?22n?1===.
∴1?3x4n=22n.
∴x4n=.
∴Sn=x4+2x8+3x12+…+(n-1)?x4(n-1)+n?x4n=(1+2+3+…+n)?(1×22+2×24+3×26+…+n?22n)=?(1×22+2×24+3×26+…+n?22n).
令Tn=1×22+2×24+3×26+…+(n?1)?22(n?1)+n?22n①
4Tn=1×24+2×26+3×28+…+(n-1)?22n+n?22n+2②
①-②得?3Tn=1×22+24+26+…+22n?n?22n+2=?n?22n+2=(22n?1)?n?22n+2.
∴Tn=(1?22n)+=+.
∴Sn=??.