已知二次函数y=ax^2-4x+c的图象与坐标轴交点A(-1,0)和点B(0,-5) 问:抛物线的对称轴上是否存在

2025-05-11 08:50:50
推荐回答(2个)
回答(1):

二次函数y=ax^2-4x+c的图象与坐标轴交点A(-1,0)和点B(0,-5)代入得
0=a+4+c
-5=c
a=1
二次函数表达式为
y=x^2-4x-5
设M点坐标(x,x^2-4x-5)存在,且AM=AB则
AB^2=AM^2
1^2+5^2=(x+1)^2+(x^2-4x-5)^2
(x+1)^2(x-5)^2+(x+1)^2-26=0
这个方程比较难解
不过可以看出
x=0时成立
这样解得一个M(0,-5)
说明至少存在一个M满足条件。

回答(2):

解析式y=x方-4x-5 对称轴x=2 设m(2,y)
则AB=AM=根号26 AM方=26=9+y方 y=正负根号17 m(2, -根号17 ) 和(2,根号17)