证明:(1)连接BD,则∵AD⊥AB,∴BD是⊙O的直径,∵AF=AE,∴∠FBA=∠EBA,∵AB=AC,∴∠FBA=∠C,∵∠C=∠D,∠D+∠ABD=90°,∴∠FBA+∠ABD=90°,即∠FBD=90°,∴BF是⊙O的切线;(2)由切割线定理可得BF2=AF?DF,∵AF=AE,BE=BF,∴BE2=AE?DF.