(2014?铜仁)如图所示,△ABC内接于⊙O,AB是⊙O的直径,D是AB延长线上一点,连接DC,且AC=DC,BC=BD.

2025-02-19 23:00:59
推荐回答(1个)
回答(1):

(1)证明:连接OC,
∵AC=DC,BC=BD,
∴∠CAD=∠D,∠D=∠BCD,
∴∠CAD=∠D=∠BCD,
∴∠ABC=∠D+∠BCD=2∠CAD,
设∠CAD=x°,则∠D=∠BCD=x°,∠ABC=2x°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴x+2x=90,
x=30,
即∠CAD=∠D=30°,∠CBO=60°,
∵OC=OB,
∴△BCO是等边三角形,
∴∠COB=60°,
∴∠OCD=180°-30°-60°=90°,
即OC⊥CD,
∵OC为半径,
∴DC是⊙O的切线;

(2)解:过O作OF⊥AE于F,
∵在Rt△OCD中,∠OCD=90°,∠D=30°,CD=10

3

∴OC=CD×tan30°=10,
OD=2OC=20,
∴OA=OC=10,
∵AE∥CD,
∴∠FAO=∠D=30°,
∴OF=AO×sin30°=10×
1
2
=5,
即圆心O到AE的距离是5.