如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE 交AB的延长线于点E,连结AD、B

2025-05-13 19:31:13
推荐回答(1个)
回答(1):

解:(1)在△ABC中,∵AB=AC, ∴∠ABC=∠C。
∵DE∥BC,∴∠ABC=∠E, ∴∠E=∠C。
又∵∠ADB=∠C, ∴∠ADB=∠E。
(2)当点D是弧BC的中点时,DE是⊙O的切线。
∵当点D是弧BC的中点时,AD⊥BC,且AD过圆心O
又∵DE∥BC,∴ AD⊥ED。 ∴ DE是⊙O的切线。
(3)连结BO、AO,并延长AO交BC于点F, 则AF⊥BC,且BF= BC=3。
又∵AB=5,∴AF=4。
设⊙O的半径为r,
在Rt△OBF中,OF=4-r,OB=r,BF=3,       
∴ r 2 =3 2 +(4-r) 2
解得:r= ,  ∴⊙O的半径是