x2-(tanα+1)x-(2+i)=0要使方程有实根,则须满足⊿=0,[-(tana+1)]^2-4*[-(2+i)]=0,即,(tan+1)^2=-8-4i=0,tana=-1=tan135,a=135度=3∏/4,则有X^2-2=0,X1=√2,X2=-√2.2.