如图,在正方形ABCD中,E是AB边上任意一点,∠ECF=45°,CF交AD于点F,将△CBE绕点C顺时针旋转到△CDP,

2025-05-18 10:03:35
推荐回答(1个)
回答(1):

(1)证明:在正方形ABCD中,∠BCD=90°,
依题意△CDP是△CBE绕点C旋转90°得到,
∴∠ECP=90°,CE=CP.
∵∠ECF=45°,
∴∠FCP=∠ECP-∠ECF=90°-45°=45°.
∴∠ECF=∠FCP,CF=CF.
∴△ECF≌△PCF.
∴EF=PF.

(2)解:相切.理由如下:
过点C作CQ⊥EF于点Q,
由(1)得,△ECF≌△PCF.
∴∠EFC=∠PFC.
∵CQ⊥EF,CD⊥FP,
∴CQ=CD.
∴直线EF与以C为圆心,CD为半径的圆相切.