已知等差数列{an}的首项a1=3,且公差d≠0,其前n项和为Sn,且a1,a4,a13分别是等比数列{bn}的b2,b3,b4

2025-05-13 03:41:35
推荐回答(1个)
回答(1):

解答:(Ⅰ)解:设等比数列的公比为q,则
∵a1,a4,a13分别是等比数列{bn}的b2,b3,b4
(a1+3d)2a1(a1+12d)
∵a1=3,∴d2-2d=0
∴d=2或d=0(舍去)
∴an=3+2(n-1)=2n+1
q=

b3
b2
a4
a1
=3,b1
b2
q
=1

∴bn=3n-1
(Ⅱ)证明:由(Ⅰ)知Snn2+2n
1
Sn
=
1
n(n+2)
=
1
2
1
n
?
1
n+2

1
S1
+
1
S2
+…+
1
Sn
=
1
2
[(1?
1
3
)+(
1
2
?
1
4
)+…+(
1
n
?
1
n+2
)]
=
1
2
(1+
1
2
?
1
n+1
?
1
n+2
)

=
3
4
?
1
2
(
1
n+1
+
1
n+2
)
3
4

1
n+1
+
1
n+2
1
2
+
1
3
=
5
6

3
4
?
1
2
(
1
n+1
+
1
n+2
)
1
3

1
3
1
S1
+
1
S2
+…+
1
Sn
3
4