解答:(Ⅰ)解:设等比数列的公比为q,则
∵a1,a4,a13分别是等比数列{bn}的b2,b3,b4.
∴(a1+3d)2=a1(a1+12d)
∵a1=3,∴d2-2d=0
∴d=2或d=0(舍去)
∴an=3+2(n-1)=2n+1
∵q=
=b3 b2
=3,b1=a4 a1
=1b2 q
∴bn=3n-1;
(Ⅱ)证明:由(Ⅰ)知Sn=n2+2n
∴
=1 Sn
=1 n(n+2)
(1 2
?1 n
)1 n+2
∴
+1 S1
+…+1 S2
=1 Sn
[(1?1 2
)+(1 3
?1 2
)+…+(1 4
?1 n
)]=1 n+2
(1+1 2
?1 2
?1 n+1
)1 n+2
=
?3 4
(1 2
+1 n+1
)<1 n+2
3 4
∵
+1 n+1
≤1 n+2
+1 2
=1 3
5 6
∴
?3 4
(1 2
+1 n+1
)≥1 n+2
1 3
∴
≤1 3
+1 S1
+…+1 S2
<1 Sn
3 4