(1)由{bn}是等比数列,得b22=b1?b3,
即(a1+4d)2=(a1+d)(a1+13d),整理得:2a1d=d2.
∵a1=1,公差d>0,
∴d=2.
∴an=1+2(n-1)=2n-1.
b1=a2=3,b2=a5=9,
∴等比数列{bn}的公比q=3.
∴bn=3n;
(2)由
+c1 b1
+…+c2 b2
=Sn,得cn bn
+c1 b1
+…+c2 b2
=Sn?1 (n≥2).cn?1 bn?1
两式作差得:
=an(n≥2).cn bn
∴cn=an?bn(n≥2).
又
=a1,c1 b1
∴c1=a1?b1.
∴cn=an?bn.
∴Tn=1×3+3×32+5×33+…+(2n-1)?3n.
3Tn=1×32+3×33+…+(2n?1)?3n+1.
两式作差得:?2Tn=3+2(32+33+…+3n)?(2n?1)?3n+1
=3+2×
?(2n?1)?3n+1.9(1?3n?1) 1?3
∴Tn=3+(n?1)?3n+1.