已知等差数列{an}的首项a1=1,公差d>0,其前n项和为Sn,数列{bn}是等比数列,且b1=a2,b2=a5,b3=a14.

2025-05-13 02:31:51
推荐回答(1个)
回答(1):

(1)由{bn}是等比数列,得b22b1?b3
(a1+4d)2=(a1+d)(a1+13d),整理得:2a1d=d2
∵a1=1,公差d>0,
∴d=2.
∴an=1+2(n-1)=2n-1.
b1=a2=3,b2=a5=9,
∴等比数列{bn}的公比q=3.
bn3n
(2)由

c1
b1
+
c2
b2
+…+
cn
bn
=Sn,得
c1
b1
+
c2
b2
+…+
cn?1
bn?1
Sn?1
 (n≥2).
两式作差得:
cn
bn
an(n≥2)

∴cn=an?bn(n≥2).
c1
b1
a1

∴c1=a1?b1
∴cn=an?bn
∴Tn=1×3+3×32+5×33+…+(2n-1)?3n
3Tn=1×32+3×33+…+(2n?1)?3n+1
两式作差得:?2Tn=3+2(32+33+…+3n)?(2n?1)?3n+1
=3+2×
9(1?3n?1)
1?3
?(2n?1)?3n+1

Tn=3+(n?1)?3n+1