(1)由a1+S1=1及a1=S1得a1=
.1 2
又由an+Sn=n及an+1+Sn+1=n+1,
得an+1-an+an+1=1,∴2an+1=an+1.
∴2(an+1-1)=an-1,即2bn+1=bn.
∴数列{bn}是以b1=a1-1=-
为首项,1 2
为公比的等比数列.1 2
(2):由(1)知bn=-
?(1 2
)n-1=-(1 2
)n,1 2
∴an=-(
)n+1.1 2
∴cn=-(
)n+1-[-(1 2
)n-1+1]1 2
=(
)n-1-(1 2
)n=(1 2
)n-1(1-1 2
)=(1 2
)n(n≥2).1 2
又c1=a1=
也适合上式,1 2
∴cn=(
)n.1 2