解答:解:(1)f′(x)=
a-lnx
x2
,令f'(x)=0,得x=ea,当x∈(0,ea)时,f'(x)>0
函数f(x)为增函数,当x∈(ea,+∞)时,f'(x)<0,函数f(x)为减函数,
故f(x)有极大值为f(ea)=e-a,(5分)
(2)由(1)知f(x)≤
1
ea
,令a=1,
则
lnx
x
≤
1
e
,
故只需
-2k
k+1
≥-1,所以得-1<k≤1(10分)
(3)由(1)知f(x)≤e-a,令a=0,则有lnx≤x-1,
∵n∈N,n≥2∴lnn2≤n2-1,
∴
lnn2
n2
≤
n2-1
n2
=1-
1
n2
,
故
ln22
22
+
ln32
32
++
lnn2
n2
≤(1-
1
22
)+(1-
1
32
)++(1-
1
n2
)
=(n-1)-(
1
22
+
1
32
++
1
n2
)<(n-1)-(
1
2
-
1
3
+
1
3
-
1
4
++
1
n
-
1
n+1
)
=(n-1)-(
1
2
-
1
n+1
)=
2n2-n-1
2(n+1)
(14分)