(1)证明:∵将△ABC沿DE折叠,使点A落在A′处,A′为CE的中点,
∴∠DEA=90°,
∵在△ABC中,∠C=90°,
∴∠DEA=∠C=90°,
∴DE∥BC,
∴△ACB∽△AED;
(2)解:∵A′为CE的中点,
∴A′C=A′E,
∵△ABC沿DE折叠,使点A落在A′处,
∴AE=A′E,
∴AE=A′E=A′C,
∴
=AE AC
,1 3
∵△ACB∽△AED,
∴
=DE BC
=AE AC
,1 3
∵BC=6,
∴DE=
BC=2.1 3