(1)根据Sn=a(Sn-an+1),分别令n=1,2,3,可求得:
a1=a,a2=a2,a3=a3;
∴6a+a2=a3;
∵a>0;
∴6+a=a2,解得a=3;
∴Sn=3(Sn-an+1)①;
∴n>1时,Sn-1=3(Sn-1-an-1+1)②;
∴①-②得:an=3an-1;
∴
=3;an an?1
∴{an}是首项为3,公比为3的等比数列;
∴an=3n;
(2)bn=3nlog23n=n?3nlog23;
∴Tn=b1+b2+…+bn=log23(1?31+2?32+…+n?3n) ①;
∴3Tn=log23(1?32+2?33+…+n?3n+1) ②;
∴①-②得:?2Tn=log23(3+32+…+3n?n?3n+1)=log23?[
?n?3n+1]=3(1?3n) 1?3
?(n+3 2
)3n+1;1 2
∴Tn=?
+3 4
?3n+1.2n+1 4