已知数列{an}的前n项和Sn满足Sn=a(Sn-an+1)(a为常数,且a>0),且a3是6a1与a2的等差中项.(1)求{an

2025-05-16 19:52:20
推荐回答(1个)
回答(1):

(1)根据Sn=a(Sn-an+1),分别令n=1,2,3,可求得:
a1=a,a2a2a3a3
∴6a+a2=a3
∵a>0;
∴6+a=a2,解得a=3;
∴Sn=3(Sn-an+1)①;
∴n>1时,Sn-1=3(Sn-1-an-1+1)②;
∴①-②得:an=3an-1

an
an?1
=3;
∴{an}是首项为3,公比为3的等比数列;
an3n
(2)bn3nlog23n=n?3nlog23
∴Tn=b1+b2+…+bn=log23(1?31+2?32+…+n?3n)     ①;
∴3Tn=log23(1?32+2?33+…+n?3n+1)                    ②;
∴①-②得:?2Tn=log23(3+32+…+3n?n?3n+1)=log23?[
3(1?3n)
1?3
?n?3n+1]
=
3
2
?(n+
1
2
)3n+1

Tn=?
3
4
+
2n+1
4
?3n+1