已知公差大于零的等差数列a n 的前n项和为S n ,且满足:a 3 ?a 4 =117,a 2 +a 5 =22.(1)求数列a n

2025-05-18 12:20:57
推荐回答(1个)
回答(1):

(1)a n 为等差数列,a 3 ?a 4 =117,a 2 +a 5 =22
又a 2 +a 5 =a 3 +a 4 =22
∴a 3 ,a 4 是方程x 2 -22x+117=0的两个根,d>0
∴a 3 =9,a 4 =13
a 1 +2d=9
a 1 +3d=13

∴d=4,a 1 =1
∴a n =1+(n-1)×4=4n-3
(2)由(1)知, s n =n+
n(n-1)×4
2
=2 n 2 -n

b n =
s n
n+c
=
2 n 2 -n
c+n

b 1 =
1
1+c
b 2 =
6
2+c
b 3 =
15
3+c

∵b n 是等差数列,∴2b 2 =b 1 +b 3 ,∴2c 2 +c=0,
c=-
1
2
(c=0舍去),
(3)由(2)得 b n =
2 n 2 -n
n-
1
2
=2n
T n =2n+
n(n-1)×2
2
= n 2 +n=(n+1)n

2T n -3b n-1 =2(n 2 +n)-3(2n-2)=2(n-1) 2 +4≥4,
但由于n=1时取等号,从而等号取不到2T n -3b n-1 =2(n 2 +n)-3(2n-2)=2(n-1) 2 +4>4,

64 b n
(n+9) b n+1
=
64×2n
(n+9)?2(n+1)
=
64n
n 2 +10n+9
=
64
n+
9
n
+10
≤4

n=3时取等号(15分)
(1)、(2)式中等号不能同时取到,所以 2 T n -3 b n-1
64 b n
(n+9) b n+1