解答:证明:连接OB,∵∠E=30°,∴∠AOB=2∠E=60°,∵OB=OA,∴△AOB是等边三角形,∴∠BAO=60°,AB=OA,∵A为DO的中点,∴AD=OA,∴AB=AD=OA,∴∠D=∠ABD,∵∠BAO是△ABD的外角,∴∠D=∠ABD=30°,∴∠OBD=180°-∠D-∠AOB=180°-30°-30°=90°,∴OB⊥BD,即BD是⊙O的切线.