已知α为钝角,tan<a+π⼀4>=-7⼀1 1.求tanα的值 2.求根号2 cos<a-π⼀4>-sin2a 分之 cos2a+1 的值

2025-05-13 10:05:52
推荐回答(1个)
回答(1):

1、tan(a+π/4)=[tana+tan(π/4)]/[1-tanatan(π/4)]=(1+tana)/(1-tana)=-1/7,解得:tana=-4/3
因a为钝角,则sina=4/5,cosa=-3/5
2、√2cos(a-π/4)-[cos2a+1]/(sin2a)
=√2cos(a-π/4)-[2cos²a]/[2sinacosa]
=(cosa+sina)-[(cosa)/(sina)]
=[-(3/5)+(4/5)]-[-(3/5)]/[(4/5)]
=(1/5)+(3/4)
=19/20