解答:证明:(1)∵OD⊥AC OD为半径,
∴
=CD
,AD
∴∠CBD=∠ABD,
∴BD平分∠ABC;
(2)∵OB=OD,
∴∠OBD=∠0DB=30°,
∴∠AOD=∠OBD+∠ODB=30°+30°=60°,
又∵OD⊥AC于E,
∴∠OEA=90°,
∴∠A=180°-∠OEA-∠AOD=180°-90°-60°=30°,
又∵AB为⊙O的直径,
∴∠ACB=90°,
在Rt△ACB中,BC=
AB,1 2
∵OD=
AB,1 2
∴BC=OD.
我也不会,自己做