an*a(n+1)=4^n
a(n+1)*a(n+2)=4^(n+1)
两式相除
a(n+2)/an=4
a1=1
a3=4a1=4
a5=4a3=16
`````````
a(2k+1)=4^k(k=0,1,2....)
同理
a2=4/a1=4
a4=4a2=16
``````````
a(2k)=4^k(k=1,2,3........)
所以
当n为奇数时an=4^[(n-1)/2]=2^(n-1)
当n为偶数时an=4^(n/2)=2^n
那么求和也要有2种
(1).当n为奇数时
Sn=[1+4+16+...2^(n-1)]+[4+16+...2^(n-1)]
``=1+2*{4[1-4^(n-1)/2]/(-3)}
``=[2^(n+2)-5]/3
(2).当n为偶数时
Sn=[1+4+16+...2^(n-2)]+[4+16+...2^n]
``={1*[1-2^n]/(-3)}+4*[1-2^n]/(-3)
``=(5/3)*(2^n-1)