a (n+1)=4an-3n+1
=>
a(n+1) - (n+1) = 4(an -n)
{an - n}是等比数列
an-n = 4^(n-1)*(a1-1)=4^(n-1)
=>
an=4^(n-1) + n
bn=nan-n^2=n*4^(n-1)
Sn=4^0+2*4^1+3*4^2+……n*4^(n-1)
4Sn=4^1+2*4^2+3*4^3+……+(n-1)*4^(n-1)+n*4^n
4Sn-Sn=-4^0-4^1-4^2-……-4^(n-1)+n*4^n
3Sn=n*4^n-(1-4^n)/(1-4)
3Sn=n*4^n+(1-4^n)/3= (3n-1)*4^n/3+1/3
Sn=(3n-1)*4^n/9+1/9
呃...打字出来太复杂...实在复杂
估计能把你弄晕了
建议在网上找例题再照做...
由以知a(n+1)=4an-3n+1所以a(n+1)-(n+1)=4(an-n)所以{an-n}为等比数列所以an-n=(a1-1)*4ˆ(n-1)所以bn=n*4ˆ(n-1) Sn=..... 4Sn=......再把两式相减即求出Sn mio