(Ⅰ)解:由a1=2,an+1=
得,对n∈N*,an≠0.2an
an+1
从而由an+1=
两边取倒数得,2an
an+1
=1 an+1
+1 2
.1 2an
即
-1=1 an+1
(1 2
-1),1 an
∵a1=2,
-1=-1 a1
.1 2
∴数列{
-1}是首项为-1 an
,公比为1 2
的等比数列.1 2
∴
-1=-1 an
?1 2
n?1=-(?1 2
)n1 2
∴
=1-1 an
=1 2n
.∴an=
2n?1 2n
.2n
2n?1
故数列{an}的通项公式是an