∫xdx/(1+x)³=lim(a->∞)∫xdx/(1+x)³ (应用广义积分定义)=lim(a->∞)∫[(1+x)-1]dx/(1+x)³=lim(a->∞)∫[1/(1+x)²-1/(1+x)³]dx=lim(a->∞)[(1/2)/(1+x)²-1/(1+x)]│=lim(a->∞)[(1/2)/(1+a)²-1/(1+a)-1/2+1]=lim(a->∞)[(1/2)(a/(1+a))²]=lim(a->∞)[(1/2)(1/(1/a+1))²]=1/2.