(1)由已知a1=2,a1+a2+a3=12,得a1+a1+d+a1+2d=12,即a1+d=4,
则a2=4,又a1=2,
∴d=2,an=2+2(n-1)=2n;
(2)由(1)知bn=
,设数列{bn}前n项和为Sn,则Sn=2n 4n
+2 4
+…+2×2 42
①,2n 4n
=Sn 4
+2 16
+2×2 43
+…+2×3 44
+2(n?1) 4n
②,2n 4n+1
又①-②错位相减得:
Sn=3 4
+1 2
-1 4
+1 8
(1+2 43
+…+1 4
)-2 4n?3
2n 4n+1
=
+5 8
×1 32
-1?
1 4n?2 1?
1 4