把区域D分为两个区域D1、D2,区域D1中f(x)≥f(y),区域D2中f(x)≤f(y),显然,
∫∫dσ=∫∫dσ=(1/2)∫∫dσ,且对于任意一点(x1,y1)∈D1,必有对应(y1,x1)∈D2与之相对应。则:∫∫e^[f(x)-f(y)]dσ=∫∫e^[f(y)-f(x)]dσ
∫∫e^[f(x)-f(y)]dσ
=∫∫e^f(x)/e^f(y)]dσ
=∫∫e^f(x)/e^f(y)]dσ+∫∫e^f(x)/e^f(y)]dσ
=∫∫e^f(x)/e^f(y)]+e^f(y)/e^f(x)]dσ
=∫∫[e^(2f(x))+e^(2f(y))]/[e^f(x)e^f(y)]dσ
≥∫∫2[e^f(x)e^f(y)]/[e^f(x)e^f(y)]dσ
=2∫∫dσ
=∫∫dσ
=(b-a)²