(1)证明:取AD中点E,连接ME,NE,
由已知M,N分别是PA,BC的中点,
∴ME∥PD,NE∥CD
又ME,NE?平面MNE,ME∩NE=E,
所以,平面MNE∥平面PCD,(2分)
所以,MN∥平面PCD(3分)
(2)证明:因为PD⊥平面ABCD,
所以PD⊥DA,PD⊥DC,
在矩形ABCD中,AD⊥DC,
如图,以D为坐标原点,
射线DA,DC,DP分别为x轴、y轴、z轴的正半轴建立空间直角坐标系(4分)
则D(0,0,0),A(
,0,0),B(
2
,1,0)C(0,1,0),P(0,0,
2
)(6分)
2
所以M(
,0,
2
2
),
2
2
=(?BD
,?1,0),
2