解答:(本小题满分12分)
解:(1)∵各项均为正数的数列{an}满足a1=3,且
-1 an+1
=an+1-2an(n∈N*),2 an
∴an+1?
=2(an?1 an+1
),1 an
∴{an?
}为一个等比数列,其公比为2,首项为a1?1 an
=1 a1
,…(2分)8 3
∴an?
=1 an
?2n?1=8 3
,n∈N*,①…(4分)2n+2 3
∵an>0,∴由①解出an=
(2n+1+1 3
).…(5分)
22n+2+9
(2)由①式有Sn+Tn=(a12+a22+…+an2)+(
+1 a12
+…+1 a22
)1 an2
=(a12+
)+(a22+1 a12
)+…+(an2+1 a22
)1 an2
=(a12?
)+(a22?1 a12
)+…+(an2?1 a22
)+2n…(9分)1 an2
=(
)2+(23 3
)2+(24 3
)2+…+(25 3
)2+2n2n+2 3
=
(4n?1)+2n,n∈N*.…(12分)64 27