(1)如图1,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.(2)某路口设立了交通

2025-05-14 04:36:11
推荐回答(1个)
回答(1):

(1)证明:∵AC⊥BC,BD⊥AD,
∴∠D=∠C=90°,
在Rt△ABC和Rt△BAD中,
AB=BA
AC=BD

∴Rt△ABC≌Rt△BAD(HL),
∴∠DBA=∠CAB,
∴△OAB是等腰三角形;

(2)在Rt△ADB中,
∵∠BDA=45°,AB=3,
∴DA=3,
在Rt△ADC中,∠CDA=60°,
∴tan60°=
CA
AD

∴CA=3
3

∴BC=CA-BA=(3
3
-3)米.
答:路况显示牌BC的高度是(3
3
-3)米.