已知等差数列{a n }的首项为a,公差为b,等比数列{b n }的首项为b,公比为a,n=1,2,…,其中a,b均为正

2025-05-18 15:19:00
推荐回答(1个)
回答(1):

解:(I)由题设知,a n =a+(n﹣1)b,
由已知可得,a<b<a+b<ab<a+2b
∴b<ab,a>1
∴ab<a+2b<3b
又∵b>0
∴a<3
∵a为正整数
∴a=2
(II)a m +1=b n ,可得a+(m﹣1)+1=ba n﹣1
∵a=2
∴3+(m﹣1)b=b●2 n﹣1

∴b>a=2且b为正整数
∴2 n﹣1 ﹣(m﹣1)=1
∴b=3
(III)由(II)知,m=2 n﹣1 ,a n =3n﹣1
∴a 1 +a 2 +…+a m =(3●1﹣1)+(3●2﹣1)+…(3●2 n﹣1 ﹣1)
=
=
=3●2 2n-3 +2 n-2