已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f(x)<f′(x),且f(0)=2,则不等式f(x)e

2025-05-19 15:50:57
推荐回答(2个)
回答(1):

设g(x)=

f(x)
ex

则g'(x)=
f′(x)ex?f(x)ex
[ex]2
f′(x)?f(x)
ex

∵f(x)<f′(x),
∴g'(x)>0,即函数g(x)单调递增.
∵f(0)=2,
∴g(0)=
f(0)
e0
=f(0)=2

则不等式
f(x)
ex
>2
等价为
f(x)
ex
f(0)
e0

即g(x)>g(0),
∵函数g(x)单调递增.
∴x>0,
∴不等式
f(x)
ex
>2
的解集为(0,+∞),
故选:B.

回答(2):

这个应该是需要构造函数

然后用导数来判断单调性

最后确定最值 然后带入那个最值的时候自变量

再解不等式