求问一高数定积分问题

如图
2025-05-22 06:58:39
推荐回答(1个)
回答(1):

∫(-π/4,π/4) [x^5+(sinx)^4]/(cosx)^6 dx
=∫(-π/4,π/4) x^5/(cosx)^6 dx + ∫(-π/4,π/4) (sinx)^4/(cosx)^6 dx
=0+ 2∫(0,π/4) (sinx)^4/(cosx)^6 dx
=2∫(0,π/4) (tanx)^4*(secx)^2 dx
=2∫(0,π/4) (tanx)^4 d(tanx)
=2/5*(tanx)^5|(0,π/4)
=2/5