已知以x为自变量的二次函数y=x2+2mx+m-7.(1)求证:不论m为任何实数,二次函数的图象与x轴都有两个交点

2025-05-14 01:17:53
推荐回答(1个)
回答(1):

(1)证明:令x2+2mx+m-7=0.
得△=(2m)2-4(m-7)=4(m?

1
2
)2+27.
∵不论m为任何实数,都有4(m?
1
2
)2+27
>0,即△>0.
∴方程有两个不相等的实数根.
∴不论m为任何实数,二次函数的图象与x轴都有两个交点;(2分)

(2)解:∵二次函数图象的开口向上,且与x轴的两个交点在点(1,0)的两侧,
∴当x=1时,y=12+2m+m-7<0.
解得m<2.①(3分)
∵关于x的一元二次方程m2x2+(2m+3)x+1=0有两个实数根,
∴△=(2m+3)2-4m2≥0,且m2≠0.
解得m≥?
3
4
,且m≠0.②(4分)
∵m为整数,由①,②可得m的值是1;(5分)

(3)解:当m=1时,方程x2+2(a+m)x+2a-m2+6m-4=0为x2+2(a+1)x+2a+1=0.
由求根公式,得x=
?2(a+1)±2a
2

∴x=-2a-1或x=-1.(6分)
∵方程有大于0且小于5的实数根,
∴0<-2a-1<5.
∴-3<a<?
1
2

∴a的整数值为-2,-1.(7分)