∵EF⊥EC,
∴∠AEF+∠DEC=90°,
∵∠AEF+∠AFE=90°,
∴∠AFE=∠DEC,
∴Rt△AEF∽Rt△DCE;
∴CD:AE=DE:AF,
∵E为矩形ABCD的边AD的中点,
∴CD=AB,DE=AE,
∴AB:AE=AE:AF,即AE2=AB?AF,
而AF≤AB,
∴AB≥AE;
∵Rt△AEF∽Rt△DCE,
∴EF:EC=AF:DE,
而DE=AE,
∴EF:EC=AF:AE,即EF:AF=EC:AE,
∵∠A=∠FEC=90°,
∴△AEF∽△ECF;
∵∠EFC≠90°,
∴△AEF∽△BFC相似不成立,
但当∠AFE=∠BFC时,△AEF∽△BCF.
故选D.