(1)∵数f(x)=
+4(x≠0),1 x2
各项均为正数的数列{an}中a1=1,
=f(an),1 an+12
∴
=1 an+12
+4,1 an2
∴
=1+(n-1)×4=4n-3,1 an2
∴an=
.1
4n-3
(2)∵bn?
=1,(3n-1)an2+n an2
∴bn=
=an2 (3n-1)an2+n
1 4n-3
+n3n-1 4n-3
=
=1 4n2-1
(1 2
-1 2n-1
),1 2n+1
∴Sn=
(1-1 2
+1 3
-1 3
+…+1 5
-1 2n-1
)1 2n+1
=
(1-1 2
1 2n+1