由对称性, 所求体积是第一卦限部分的 8 倍。
V = 8V1 = 16∫∫∫
= -8∫<0, π/4>dt[1/(cost)^2]∫<0, 1>√[1-(rcost)^2]d[1-(rcost)^2]
= -8∫<0, π/4>dt[1/(cost)^2] (2/3)[{1-(rcost)^2}^(3/2)]∫<0, 1>
= (16/3)∫<0, π/4>dt[1/(cost)^2][1-(sint)^3]
= (16/3)∫<0, π/4>[(sect)^2-(sint)^3/(cost)^2]dt
= (16/3)[tant]<0, π/4> + (16/3)∫<0, π/4> [1-(cost)^2]/(cost)^2]dcost
= 16/3 + (16/3)∫<0, π/4> [1/(cost)^2 - 1]dcost
= 16/3 + (16/3)[-1/cost - cost]<0, π/4>
= 16/3 + (16/3)(-√2-√2/2+1+1)
= 16/3 + (16/3)(2-3√2/2) = 16 - 8√2 = 8(2-√2)
积分区域关于xy平面是对称的,被积函数z关于xy平面是奇函数(奇对称的),因此
积分值是0;同理,x,y的积分值都是0。因此只需计算3/2的积分值
=3/2*V的体积
=3/2*4pi/3
=2pi。