解:(1)AG=CE.
理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABG=∠CBE=90°,
在△ABG和△CBE中,
∵
,
AB=CB ∠ABG=∠CBG=90° BG=BE
∴△ABG≌△CBE(SAS),
∴AG=CE;
(2)过点G作GM⊥AC于点M,
∵AG恰平分∠BAC,MG⊥AC,GB⊥AB,
∴BG=MG,
∵BE=1,
∴MG=BG=1,
∵AC平分∠DCB,
∴∠BCM=45°,
∴MC=MG=1,
∴GC=
,
2
∴AB的长为:AB=BC=
+1;
2
(3)AG=CE仍然成立.
理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABC=∠EBG=90°,
∵∠ABG=∠ABC-∠CBG,
∠CBE=∠EBG-∠CBG,
∴∠ABG=∠CBE,
在△ABG和△CBE中,
∵
,
AB=CB ∠ABG=∠CBE BG=BE
∴△ABG≌△CBE(SAS),
∴AG=CE.