b+1/c=1即:bc+1=c即:bc-c=-1得:c=-1/(b-1)
所以:c+1/a= -1/(b-1) +1/a=(-a+b-1)/(ab-a)
又根据a+1/b=1即ab+1=b得:ab=b-1
所以c+1/a=(-a+b-1)/(ab-a)=(-a+b-1)/(b-1-a)=1
得证
应为他相等多仪\
由a+1/b=1得:b=1/(1-a);
由 b+1/c=1 得: b=1-1/c;
联立即得:c+1/a=1.
证明:
a+1/b=1
a=1-1/b
1
1/a=---------
1/c=1-b
c=1/1-b
c+1/a= 1/1-b + b/b-1
=1/<1-b> - b/<1-b>
=1
a + = 1 ,b + = 1
= 1 – a , b = 1 -
两式相乘得
(1 – a)(1 - )= 1
展开整理得
a + =
两边同时除以ac得
c + =1