(1)证明:∵△ABC为等边三角形.∴AB=AC,∠BAC=∠ACB=60°,在△BAE和△ACD中: AE=CD ∠BAC=∠ AB=AC ACB∴△BAE≌△ACD(2)答:BP=2PQ.证明:∵△BAE≌△ACD,∴∠ABE=∠CAD.∵∠BPQ为△ABP外角,∴∠BPQ=∠ABE+∠BAD.∴∠BPQ=∠CAD+∠BAD=∠BAC=60°∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ.