(2011?郑州三模)如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,侧

2025-05-08 14:12:40
推荐回答(1个)
回答(1):

(1)证明:因为PB=PC,O是BC的中点,
所以PO⊥BC,
又侧面PBC⊥底面ABCD,PO?平面PBC,
面PBC∩底面ABCD=BC,
所以PO⊥平面ABCD.…(4分)
(2)证明:以点O为坐标原点,建立如图空间直角坐标系O-xyz,
设OP=t(t>0),则P(0,0,t),A(1,2,0),B(1,0,0),D(-1,1,0),

PA
=(1,2,-t),
BD
=(-2,1,0),
因为
PA
?
BD
=0,所以
PA
BD

即PA⊥BD.…(8分)
(3)设平面PAD和平面PAO的法向量分别为
m
=(a,b,c),
n
=(x,y,z),
注意到
PD
=(-1,1,-t),
OA
=(1,2,0),
OP
=(0,0,t),
m
?
PD
=?a+b?tc=0
m
?
PA
=a+2b?tc=0
,令a=1得,
m
=(1,-2,?
3
t
),
n
?
OA
=x+2y=0