(1)证明:∵BM绕点B逆时针旋转60°得到BN,
∴BM=BN,∠MBN=60°,
∵△ABE是等边三角形,
∴BA=BE,∠ABE=60°,
∵∠ABM+∠ABN=60°,∠EBN+∠ABN=60°,
∴∠ABM=∠EBN,
在△AMB和△ENB中,
,
AB=EB ∠ABM=∠EBN BM=BN
∴△AMB≌△ENB(SAS);
(2)解:①连接AC,AC与BD相交于点O,如图1,
∵四边形ABCD是边长为
的正方形,
2
∴AC=
×
2
=2,点O为BD的中点,
2
∵AM+CM≥AC(当M点在AC上时取等号),
∴当M点在BD的中点时,AM+CM的值最小,最小值为2;
②∵△BMN为等边三角形,
∴BM=MN,
∵△AMB≌△ENB,
∴EN=AM,
∴当点E、N、M、C共线时,AM+BM+CM的值最小,如图2,
作EH⊥BC于H,
∵∠ABE=60°,∠ABC=90°,
∴∠EBH=30°,
在Rt△EBH中,EH=
BE=1 2
,
2
2
BH=
EH=
3